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Abstract

IMPORTANCE Increasing evidence suggests an important role of liver function in the
pathophysiology of Alzheimer disease (AD). The liver is a major metabolic hub; therefore,
investigating the association of liver function with AD, cognition, neuroimaging, and CSF biomarkers
would improve the understanding of the role of metabolic dysfunction in AD.

OBJECTIVE To examine whether liver function markers are associated with cognitive dysfunction
and the “A/T/N” (amyloid, tau, and neurodegeneration) biomarkers for AD.

DESIGN, SETTING, AND PARTICIPANTS In this cohort study, serum-based liver function markers
were measured from September 1, 2005, to August 31, 2013, in 1581 AD Neuroimaging Initiative
participants along with cognitive measures, cerebrospinal fluid (CSF) biomarkers, brain atrophy,
brain glucose metabolism, and amyloid-β accumulation. Associations of liver function markers with
AD-associated clinical and A/T/N biomarkers were assessed using generalized linear models adjusted
for confounding variables and multiple comparisons. Statistical analysis was performed from
November 1, 2017, to February 28, 2019.

EXPOSURES Five serum-based liver function markers (total bilirubin, albumin, alkaline
phosphatase, alanine aminotransferase, and aspartate aminotransferase) from AD Neuroimaging
Initiative participants were used as exposure variables.

MAIN OUTCOMES AND MEASURES Primary outcomes included diagnosis of AD, composite scores
for executive functioning and memory, CSF biomarkers, atrophy measured by magnetic resonance
imaging, brain glucose metabolism measured by fludeoxyglucose F 18 (18F) positron emission
tomography, and amyloid-β accumulation measured by [18F]florbetapir positron emission
tomography.

RESULTS Participants in the AD Neuroimaging Initiative (n = 1581; 697 women and 884 men; mean
[SD] age, 73.4 [7.2] years) included 407 cognitively normal older adults, 20 with significant memory
concern, 298 with early mild cognitive impairment, 544 with late mild cognitive impairment, and 312
with AD. An elevated aspartate aminotransferase (AST) to alanine aminotransferase (ALT) ratio and
lower levels of ALT were associated with AD diagnosis (AST to ALT ratio: odds ratio, 7.932 [95% CI,
1.673-37.617]; P = .03; ALT: odds ratio, 0.133 [95% CI, 0.042-0.422]; P = .004) and poor cognitive
performance (AST to ALT ratio: β [SE], −0.465 [0.180]; P = .02 for memory composite score; β [SE],
−0.679 [0.215]; P = .006 for executive function composite score; ALT: β [SE], 0.397 [0.128];
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Abstract (continued)

P = .006 for memory composite score; β [SE], 0.637 [0.152]; P < .001 for executive function
composite score). Increased AST to ALT ratio values were associated with lower CSF amyloid-β 1-42
levels (β [SE], −0.170 [0.061]; P = .04) and increased amyloid-β deposition (amyloid biomarkers),
higher CSF phosphorylated tau181 (β [SE], 0.175 [0.055]; P = .02) (tau biomarkers) and higher CSF
total tau levels (β [SE], 0.160 [0.049]; P = .02) and reduced brain glucose metabolism (β [SE], −0.123
[0.042]; P = .03) (neurodegeneration biomarkers). Lower levels of ALT were associated with
increased amyloid-β deposition (amyloid biomarkers), and reduced brain glucose metabolism (β
[SE], 0.096 [0.030]; P = .02) and greater atrophy (neurodegeneration biomarkers).

CONCLUSIONS AND RELEVANCE Consistent associations of serum-based liver function markers
with cognitive performance and A/T/N biomarkers for AD highlight the involvement of metabolic
disturbances in the pathophysiology of AD. Further studies are needed to determine if these
associations represent a causative or secondary role. Liver enzyme involvement in AD opens avenues
for novel diagnostics and therapeutics.

JAMA Network Open. 2019;2(7):e197978. doi:10.1001/jamanetworkopen.2019.7978

Introduction

Metabolic activities in the liver determine the state of the metabolic readout of peripheral circulation.
Mounting evidence suggests that patients with Alzheimer disease (AD) display metabolic
dysfunction.1 Clinical studies suggest that impaired signaling, energy metabolism, inflammation, and
insulin resistance play a role in AD.2,3 This observation is in line with the observation that many
metabolic disorders (eg, diabetes, hypertension, obesity, and dyslipidemia) are risk factors for AD.4

This evidence highlights the importance of the liver in the pathophysiological characteristics of AD.
Focused investigation to assess the role of liver function in AD and its endophenotypes is required to
bridge the gap between these observations.

Peripheral blood levels of biochemical markers including albumin, alkaline phosphatase, alanine
aminotransferase (ALT), aspartate aminotransferase (AST), and total bilirubin are used to assess liver
function. Alanine aminotransferase and AST are used in general clinical practice to measure liver
injury5,6 and are factors associated with cardiovascular and metabolic diseases,7,8 known risk factors
of AD and cognitive decline.9,10 Given this fact, it is conceivable that aminotransferases are surrogate
biomarkers of liver metabolic functioning. A systematic search yielded few reports related to
research in humans linking peripheral biomarkers of liver functioning to central biomarkers related to
AD including amyloid-β and tau accumulation, brain glucose metabolism, and structural atrophy.

We investigated the association of peripheral liver function markers with AD diagnosis,
cognition, and biomarkers of AD pathophysiological characteristics including neuroimaging
(magnetic resonance imaging [MRI] and position emission tomography [PET]) and cerebrospinal
fluid (CSF) from older adults in the AD Neuroimaging Initiative (ADNI) cohort. The AD biomarkers
were selected and defined consistent with the National Institute on Aging–Alzheimer Association
Research Framework (amyloid, tau, and neurodegeneration [A/T/N]) for AD biomarkers that defines
3 general groups of biomarkers based on the nature of pathologic process that each measures.11

Methods

Study Population
Individuals in this study were participants of ADNI. The initial phase (ADNI-1) was launched in 2003
to test whether serial MRI markers, PET markers, other biological markers, and clinical and
neuropsychological assessment could be combined to measure the progression of mild cognitive
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impairment (MCI) and early AD. The initial phase was extended to subsequent phases (ADNI-GO,
ADNI-2, and ADNI-3) for follow-up of existing participants and additional new enrollments. Inclusion
and exclusion criteria, clinical and neuroimaging protocols, and other information are reported
elsewhere.12-14 Demographic and clinical information, raw data from neuroimaging scans, CSF
biomarkers, information on APOE status, and cognitive scores were downloaded from the ADNI data
repository.12 Baseline data were collected from September 1, 2005, to August 31, 2013. Written
informed consent was obtained at enrollment, which included permission for analysis and data
sharing. This study was approved by each participating site’s institutional review board. This report
followed the Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) reporting
guidelines for cohort studies.

Liver Function Markers
Five laboratory tests were downloaded from the ADNI data repository and used in the study: total
bilirubin, albumin, alkaline phosphatase, ALT, and AST. The liver function markers followed a normal
distribution after log transformation. For each marker, participants with values greater or smaller
than 4 SDs from its mean value were considered outliers and were removed. To determine if outliers
had a significant effect on our findings we performed a sensitivity analysis and observed few
differences (or slightly more significant), if any, in results when including outliers (eTable 1 in the
Supplement).

Dementia Diagnosis
Participants in ADNI were classified as cognitively normal controls (CN) or having significant memory
concerns (SMC), MCI, or mild clinical AD. Criteria for classification were as follows: Mini-Mental State
Examination score range (range, 0 [worst] to 30 [best]) for CN and MCI was 24 to 30, and for AD was
20 to 26; and overall Clinical Dementia Rating score (range for each, 0 [best] to 3 [worst]) for CN was
0, for MCI was 0.5 with a mandatory requirement of memory box score of 0.5 or greater, and for AD
was 0.5 or 1.15 Cognitively normal controls did not have any significant impairment in cognition or
activities of daily living. Participants with SMC had normal cognition and no significant impairment in
activities of daily living, but had a score of 16 or more on the first 12 items of the self-report version
of the Cognitive Change Index (range, 12 [no change] to 60 [severe change]).16 Participants with MCI
had cognitive impairments in memory and/or other domains but were able to perform activities of
daily living and did not qualify for a diagnosis of dementia.15 Participants with AD had to meet the
National Institute of Neurological and Communicative Disorders and Stroke–AD and Related
Disorders Association criteria for probable AD.17 Participants from the ADNI-1 cohort with MCI were
all classified as late MCI, with a memory impairment approximately 1.5 SD below education-adjusted
norms. In the ADNI-GO and ADNI-2 cohort, participants with MCI were classified as either early MCI,
with a memory impairment approximately 1 SD below education-adjusted norms, or late MCI (same
criteria as in ADNI-1). Both ADNI-1 and ADNI-GO and ADNI-2 participants met the criteria for amnestic
MCI, but many in the ADNI-GO and ADNI-2 cohort included the earlier stage MCI designation (ie,
early MCI).18

Cognition
Composite scores were used to measure memory and executive functioning. A memory composite
score was created from the following: memory tasks from the Alzheimer Disease Assessment Scale–
cognitive subscale, the Rey Auditory Verbal Learning Test, memory components of the Mini-Mental
State Examination, and the Logical Memory task.19 An executive function composite score included
the following: Wechsler Adult Intelligence Scale–Revised Digit Symbol Substitution task and Digit
Span backward task, Trail Making Test Parts A and B, category fluency (animals and vegetables), and
5 clock drawing items. Composite scores have a mean of 0 and an SD of 1.20
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Neuroimaging Processing
MRI Scans
Baseline T1-weighted brain MRI scans were acquired using a sagittal 3-dimensional magnetization
prepared rapid gradient echo scans following the ADNI MRI protocol.21,22 As previously detailed,
FreeSurfer, version 5.1, a widely used automated MRI analysis approach, was used to process MRI
scans and extract whole-brain and region-of-interest (ROI)–based neuroimaging endophenotypes
including volumes and cortical thickness determined by automated segmentation and
parcellation.23-25 The cortical surface was reconstructed to measure thickness at each vertex. The
cortical thickness was calculated by taking the Euclidean distance between the gray and white
boundary and the gray and CSF boundary at each vertex on the surface.26-28

PET Scans
Preprocessed fludeoxyglucose (FDG) F 18 (18F) and [18F]florbetapir PET scans (coregistered,
averaged, standardized image and voxel size, and uniform resolution) were downloaded from the
ADNI Laboratory of Neuro Imaging (LONI) site12 as described in previously reported methods for
acquisition and processing of PET scans.23,29 For [18F]FDG-PET, scans were intensity normalized
using a pons ROI to create [18F]FDG standardized uptake value ratio (SUVR) images. For
[18F]florbetapir PET, scans were intensity normalized using a whole cerebellum reference region to
create SUVR images.

CSF Biomarkers
The ADNI generated CSF biomarkers (amyloid-β 1-42, total tau [t-tau], and phosphorylated tau181

[p-tau181]) in pristine aliquots of 2401 ADNI CSF samples using the validated and highly automated
Roche Elecsys electrochemiluminescence immunoassays30,31 and the same reagent lot for each of
these 3 biomarkers. Cerebrospinal fluid biomarker data were downloaded from the ADNI LONI site.12

Statistical Analysis
Statistical analysis was conducted from November 1, 2017, to February 28, 2019. Logistic regression
analysis was performed to explore the diagnostic group differences between AD diagnosis and each
liver function marker separately. Age, sex, body mass index (BMI), and APOE ε4 status were used as
covariates. We performed a linear regression analysis to access the association of liver function
markers with composite scores for memory and executive functioning using age, sex, years of
education, BMI, and APOE ε4 status as covariates. We also performed a linear regression analysis
using age, sex, BMI, and APOE ε4 status as covariates.

ROI-Based Analysis of Structural MRI and PET Scans
Mean hippocampal volume was used as an MRI-related phenotype. For FDG-PET, a mean SUVR value
was extracted from a global cortical ROI representing regions where patients with AD show
decreased glucose metabolism relative to CN participants from the full ADNI-1 cohort, normalized to
pons.29 For [18F]florbetapir PET, a mean SUVR value was extracted using MarsBaR from a global
cortical region generated from an independent comparison of ADNI-1 [11C] Pittsburgh Compound B
SUVR scans (regions where AD > CN). We performed a linear regression analysis using age, sex, BMI,
and APOE ε4 status as covariates to evaluate the association of liver function markers with
AD-related endophenotypes from MRI and PET scans. For hippocampal volume, years of education,
intracranial volume, and magnetic field strength were added as additional covariates.32

Whole-Brain Imaging Analysis
The SurfStat software package33 was used to perform a multivariable analysis of cortical thickness to
examine the association of liver function markers with brain structural changes on a vertex-by-
vertex basis using a general linear model approach.28 General linear models were developed using
age, sex, years of education, intracranial volume, BMI, APOE ε4 status, and magnetic field strength as
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covariates. The processed FDG-PET and [18F]florbetapir PET images were used to perform a
voxelwise statistical analysis of the association of liver function markers with brain glucose
metabolism and amyloid-β accumulation across the whole brain using SPM8.34 We performed a
multivariable regression analysis using age, sex, BMI, and APOE ε4 status as covariates. In the whole-
brain surface-based analysis, the adjustment for multiple comparisons was performed using the
random field theory correction method with P < .05 adjusted as the level for significance.35-37 In the
voxelwise whole-brain analysis, the significant statistical parameters were selected to correspond
to a threshold of P < .05 (false discovery rate [FDR]–corrected).38

Multiple Testing Correction
Results of the analysis of liver function markers with AD diagnosis groups, cognitive composite
measures, and A/T/N biomarkers for AD separately were corrected for multiple testing using the FDR
with the Benjamini-Hochberg procedure (p.adjust command in R [R Project for Statistical
Computing]).

Results

Study Sample
Our analyses included 1581 ADNI participants (407 CN, 20 with SMC, 298 with early MCI, 544 with
late MCI, and 312 with AD). Demographic information as well as mean and SD of liver function
markers stratified by clinical diagnosis are presented in eTable 2 in the Supplement.

Diagnostic Group Difference of Liver Function Markers With AD Diagnosis
Levels of ALT were significantly decreased in AD compared with CN (odds ratio, 0.133; 95% CI,
0.042-0.422; P = .004) (Table 1), while AST to ALT ratio values were significantly increased in AD
(odds ratio, 7.932; 95% CI, 1.673-37.617; P = .03). There was a trend to suggest that ALT levels were
increased and AST to ALT ratio values were decreased in MCI compared with CN, but these became
nonsignificant after adjustment for multiple comparisons (eTable 3 in the Supplement).

Cognition
After adjusting for multiple comparison correction using FDR, we identified significant associations
of liver function markers with cognition (Table 2). Higher levels of alkaline phosphatase and AST to
ALT ratio were associated with lower memory scores (alkaline phosphatase: β [SE], –0.416 [0.162];
P = .02; AST to ALT ratio: β [SE], –0.465 [0.180]; P = .02) and executive functioning scores (alkaline
phosphatase: β [SE], –0.595 [0.193]; P = .006; AST to ALT ratio: β [SE], –0.679 [0.215]; P = .006).
Higher ALT levels were associated with higher memory scores (β [SE], 0.397 [0.128]; P = .006) and
executive functioning scores (β [SE], 0.637 [0.152]; P < .001), whereas higher AST levels were
associated with higher executive functioning scores (β [SE], 0.607 [0.215]; P = .01).

Table 1. Results of Association of Liver Function Biomarkers
With Alzheimer Disease Diagnosisa

Liver Function Marker Odds Ratio (95% CI) Corrected P Value
Albumin, g/dL 5.789 (0.040-843.993) .49

Alkaline phosphatase, U/L 3.620 (0.844-15.529) .12

ALT, U/L 0.133 (0.042-0.422) .004

AST, U/L 0.229 (0.045-1.175) .12

AST to ALT ratio 7.932 (1.673-37.617) .03

Total bilirubin, mg/dL 1.405 (0.585-3.377) .49

Abbreviations: ALT, alanine aminotransferase; AST, aspartate aminotransferase.
a Cognitively normal vs Alzheimer disease. Analyses were adjusted for age, sex,

body mass index, and APOE ε4 status.
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Biomarkers of Amyloid-β
We used CSF amyloid-β 1-42 levels and a global cortical amyloid deposition measured from amyloid
PET scans as biomarkers of amyloid-β. The regression coefficient of the AST to ALT ratio showed a
negative association with CSF amyloid-β 1-42 levels (β [SE], –0.170 [0.061]; P = .04), indicating that
higher AST to ALT ratio values were associated with CSF amyloid-β 1-42 positivity (Figure 1).
However, there was no significant correlation between liver function markers and global cortical
amyloid deposition.

In the whole-brain analysis using multivariable regression models to determine the association
of liver function markers with amyloid-β load measured from amyloid PET scans on a voxelwise level,
we identified significant associations for 2 liver function markers. Higher ALT levels were significantly
associated with reduced amyloid-β deposition in the bilateral parietal lobes (Figure 2A). Increased
AST to ALT ratio values were significantly associated with increased amyloid-β deposition in the
bilateral parietal lobes and right temporal lobe (Figure 2C).

Biomarkers of Fibrillary Tau
We used CSF p-tau levels as a biomarker of fibrillary tau. We investigated the association of liver
function markers with CSF p-tau, adjusting for APOE ε4 status as a covariate. Higher AST to ALT ratio
values were associated with higher CSF p-tau values (β [SE], 0.175 [0.055]; P = .02) (Figure 1).

Biomarkers of Neurodegeneration or Neuronal Injury
We used structural atrophy measured from MRI scans, brain glucose metabolism from FDG-PET
scans, and CSF t-tau levels as biomarkers of neurodegeneration or neuronal injury.

Table 2. Results of Association of Liver Function Biomarkers With Composite Cognitive Performance Measuresa

Liver Function Marker

Memory Composite Score Executive Function Composite Score

β (SE) Corrected P Value β (SE) Corrected P Value
Albumin, g/dL −0.872 (0.576) .17 −0.203 (0.689) .77

Alkaline phosphatase, U/L −0.416 (0.162) .02 −0.595 (0.193) .006

ALT, U/L 0.397 (0.128) .006 0.637 (0.152) <.001

AST, U/L 0.339 (0.180) .09 0.607 (0.215) .01

AST to ALT ratio −0.465 (0.180) .02 −0.679 (0.215) .006

Total bilirubin, mg/dL −0.068 (0.103) .61 −0.066 (0.123) .65

Abbreviations: ALT, alanine aminotransferase; AST,
aspartate aminotransferase.
a Analyses were adjusted for age, sex, educational

level, body mass index, and APOE ε4 status.

Figure 1. Results of Association of Liver Function Biomarkers With Amyloid, Tau, and Neurodegeneration (A/T/N)
Biomarkers for Alzheimer Disease

Albumin

Alkaline Phosphatase

ALT

AST to ALT ratio

AST

Total Bilirubin

CSF Aβ CSF p-tau CSF tau

A/T/N biomarker

FDG

A T N

MRI

–3:–2 ratio

–2:–1.3 ratio

–1.3:1.3 ratio

1.3:2 ratio

–6:–3 ratio

–log10 (q value) x sign (beta)

2:3 ratio

3:6 ratio

Heat map of q-values of the association between liver
function markers and the A/T/N biomarkers for
Alzheimer disease. P values estimated from linear
regression analyses were corrected for multiple testing
using false discovery rate (q value). White indicates
q > 0.05, red indicates significant positive association,
and green indicates significant negative association.
Aβ indicates amyloid-β; ALT, alanine aminotransferase;
AST, aspartate aminotransferase; CSF, cerebrospinal
fluid; FDG, fludeoxyglucose positron emission
tomography; MRI, magnetic resonance imaging; and
p-tau, phosphorylated tau.
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Brain Glucose Metabolism
We performed an ROI-based association analysis of liver function markers with a global cortical
glucose metabolism value measured from FDG-PET scans across 1167 ADNI participants with both
FDG-PET scans and measurement of liver function markers. The association analysis including APOE
ε4 status as a covariate identified 2 markers as significantly associated with brain glucose metabolism
after controlling for multiple testing using FDR (Figure 1). For ALT, higher levels were associated with
increased glucose metabolism (β [SE], 0.096 [0.030]; P = .02), while for the AST to ALT ratio, higher
ratio values were associated with reduced glucose metabolism (β [SE], –0.123 [0.042]; P = .03).

In the detailed whole-brain analysis to determine the association of liver function markers with
brain glucose metabolism on a voxelwise level, increased ALT levels were associated with increased
glucose metabolism in a widespread pattern, especially in the bilateral frontal, parietal, and temporal
lobes (Figure 2B). However, higher AST to ALT ratio values were significantly associated with reduced
glucose metabolism in the bilateral frontal, parietal, and temporal lobes (Figure 2D).

Figure 2. Detailed Whole-Brain Voxel-Based Imaging Analysis for Alanine Aminotransferase (ALT) and Aspartate Aminotransferase (AST) to ALT Ratio Levels Using
Positron Emission Tomography (PET) Scans
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Whole-brain multivariable analysis was performed to visualize the topography of the
association of ALT levels and AST to ALT ratio values with amyloid-β load and glucose
metabolism on a voxelwise level (false discovery rate–corrected P < .05). A, Higher ALT
levels were significantly associated with reduced amyloid-β deposition in the bilateral
parietal lobes. B, Increased ALT levels were significantly associated with increased

glucose metabolism in a widespread manner, especially in the bilateral frontal, parietal,
and temporal lobes. C, Increased AST to ALT ratio values were significantly associated
with increased amyloid-β deposition in the bilateral parietal lobes and the right temporal
lobe. D, Increased AST to ALT ratio values were significantly associated with reduced
brain glucose metabolism in the bilateral frontal, parietal, and temporal lobes.
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Structural MRI (Atrophy)
In the investigation of the association of liver function markers with mean hippocampal volume with
APOE ε4 status as a covariate, we did not identify any significant association with hippocampal
volume after controlling for multiple testing using FDR (Figure 1). Following the detailed whole-brain
surface-based analysis of liver function markers using multivariable regression models to assess
associations with cortical thickness, higher ALT levels were significantly associated with larger
cortical thickness in the bilateral temporal lobes (Figure 3), which showed consistent patterns in the
associations of brain glucose metabolism.

CSF t-Tau
Higher AST to ALT ratio values were associated with higher CSF t-tau levels (β [SE], 0.160 [0.049];
P = .02) (Figure 1), which showed consistent patterns in the associations of CSF amyloid-β 1-42 or
p-tau levels and brain glucose metabolism.

Discussion

We investigated the association between serum-based liver function markers and AD diagnosis,
cognition, and AD pathophysiological characteristics based on the A/T/N framework for AD
biomarkers in the ADNI cohort.39 Our findings suggest that the decreased levels of ALT and elevated
AST to ALT ratio that were observed in patients with AD were associated with poor cognition and
reduced brain glucose metabolism. We also found that an increased AST to ALT ratio was associated
with lower CSF amyloid-β 1-42 levels, greater amyloid-β deposition, and higher CSF p-tau and t-tau
levels. Furthermore, we observed that decreased levels of ALT were associated with greater
amyloid-β deposition and structural atrophy.

Figure 3. Detailed Whole-Brain Surface-Based Imaging Analysis for Alanine Aminotransferase (ALT) Levels
Using Magnetic Resonance Imaging (MRI) Scans

0.025.05

0.025.05

P Value for Cluster P Value for Vertex

A whole-brain multivariable analysis of cortical
thickness across the brain surface was performed to
visualize the topography of the association of ALT
levels with brain structure. Statistical maps were
thresholded using a random field theory for a multiple
testing adjustment to a corrected significance level of
P < .05. The P value for clusters indicates significant
corrected P values with the lightest blue color. Higher
ALT levels were significantly associated with greater
cortical thickness, especially in bilateral
temporal lobes.
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Decreased levels of ALT and increased AST to ALT ratio values were observed in patients with
AD and were associated with lower scores on measures of memory and executive function. Our
findings are comparable with those of an earlier study that reported increased AST to ALT ratio values
and lower levels of ALT in patients with AD compared with controls, although in that study, the
association between AD and ALT levels did not reach statistical significance.40 Altered liver enzymes
lead to disturbances in liver-associated metabolites including branched-chain amino acids, ether-
phosphatidylcholines, and lipids,41 which we and others show are altered in AD1,42-44 and may play a
role in disease pathophysiologic characteristics.45 Disturbed energy metabolism is one of the
processes that may explain the observed lower levels of ALT and increased enzyme ratio in
individuals with AD and impaired cognition.3,5 This finding is concordant with our observation that
increased AST to ALT ratio values and lower levels of ALT showed a consistent significant association
with reduced brain glucose metabolism, particularly in the orbitofrontal cortex and temporal lobes,
areas of the brain implicated in memory and executive function. Brain glucose hypometabolism is an
early feature of AD and cognitive impairment during the prodromal stage.46,47 Moreover, ALT and
AST are key enzymes in gluconeogenesis in the liver and production of neurotransmitters required in
maintaining synapses.48 Alanine aminotransferase catalyzes a reversible transamination reaction
between alanine and α-ketoglutarate to form pyruvate and glutamate, while AST catalyzes a
reversible reaction between aspartate and α-ketoglutarate to form oxaloacetate and glutamate.49

Although exact mechanisms remain unclear, 2 possible mechanisms may explain altered levels of
enzymes in AD. First, reduced ALT levels lead to reduced pyruvate, which is required for glucose
production via gluconeogenesis in the liver and glucose is distributed in various body tissues as an
energy source,50 thus disturbing energy homeostasis. Second, altered levels of ALT and AST may
affect levels of glutamate, an excitatory neurotransmitter of the central nervous system involved in
synaptic transmission, which also plays an important role in memory.51

In the case of low glucose metabolism in the brain, as observed in our current study, less
α-ketoglutarate is available via the tricarboxylic acid cycle that favors glutamate catabolism vs
glutamate synthesis in reversible reaction (catalyzed by AST and ALT).52 Glutamate acts as a
neurotransmitter in approximately two-thirds of the synapses in neocortical and hippocampal
pyramidal neurons and thus is involved in memory and cognition via long-term potentiation.53 In a
sample of healthy adults, plasma ALT and AST levels were significantly positively correlated with
plasma glutamate levels,5,54 which indicates that lower levels of ALT will decrease glutamate levels
in plasma. Based on evidence from earlier studies that peripheral blood levels of glutamate are
positively correlated with levels of glutamate in the CSF55 and studies that reported lower levels of
glutamate in patients with AD compared with controls in both blood56 and brain tissues,36,57-59 we
can infer that lower levels of ALT or AST may affect glutamate levels in AD. In older adults, lower
serum ALT levels are associated with mortality60,61 and are thought to be a biomarker for increased
frailty, sarcopenia, and/or reduced levels of pyridoxine (vitamin B6).62 Pyridoxine phosphate is a
coenzyme for the synthesis of amino acids, neurotransmitters (eg, serotonin and norepinephrine),
and sphingolipids. Alanine aminotransferase decreases with age63 and may be a sign of hepatic aging.
Glutamate levels also decrease with increasing age.64 Together with the fact that age is the strongest
risk factor for AD,65 decreasing levels of ALT with age may also indicate a possible biological link
between aging and AD. Nevertheless, further research is needed to determine the exact cause of
reducing ALT levels with age and the pathway through which it can influence neurologic disorders,
including AD.

Increased AST to ALT ratios are observed in individuals with nonalcoholic fatty liver disease,
which is the hepatic manifestation of metabolic syndrome.66 In the Framingham Heart Study,
nonalcoholic fatty liver disease was associated with smaller total cerebral brain volume even after
adjustment for multiple cardiovascular risk factors.67 Liver dysfunction is also associated with the
development of disease including cardiovascular disease and insulin resistance through disruptions
in glucose and lipid metabolism, key physiological functions of the liver.68,69 Thus, using the AST to
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ALT ratio as a marker for overall metabolic disturbance,5 our study provides evidence of an
association between altered metabolic status and AD, cognition, and AD endophenotypes.

In addition to ALT levels and the AST to ALT ratio, elevated levels of alkaline phosphatase were
significantly associated with poor cognition. This is in line with results from the Oxford Project to
Investigate Memory and Aging, which reported increased alkaline phosphatase levels in individuals
with AD and an inverse association with cognition.70 Alkaline phosphatase is an enzyme primarily
expressed in the liver and kidneys as well as in endothelial cells in the brain.71,72 The neuronal form of
alkaline phosphatase plays a role in developmental plasticity and activity-dependent cortical
functions via contributing in γ-aminobutyric acid metabolism.73-76 Changes in plasma levels of
alkaline phosphatase may occur as a result of central nervous system injury.77

Limitations
This study has several limitations. The observational design of this ADNI cohort study limits our ability
to make assumptions about causality. There is need to evaluate the association of liver enzymes with
AD in prospective manner. Another limitation of our study is that we did not adjust for alcohol
consumption, which was not available in ADNI. Alcohol consumption is associated with altered liver
enzymes. Instead, we used a well-established surrogate marker of alcohol consumption,
γ-glutamyltransferase. Elevations in γ-glutamyltransferase generally indicate long-term heavy
drinking rather than episodic heavy drinking.78 Our key findings remained significant after
adjustment for γ-glutamyltransferase and statin use (eTable 4, eTable 5, and eFigure in the
Supplement). However, given the associations with liver function measures and A/T/N biomarkers
for AD, it appears that liver function may play a role in the pathogenesis of AD, but limitations should
be taken into account before further extrapolating our findings.

Conclusions

This study’s results suggest that altered liver function markers are associated with AD diagnosis and
impaired memory and executive function as well as amyloid-β, tau, and neurodegenerative
biomarkers of AD pathophysiological characteristics. These results are, to our knowledge, the first to
show an association of peripheral markers of liver functioning with central biomarkers associated
with AD. Although our results suggest an important role of liver functioning in AD pathophysiological
characteristics, the causal pathways remain unknown. The liver-brain biochemical axis of
communication should be further evaluated in model systems and longitudinal studies to gain deeper
knowledge of causal pathways.

ARTICLE INFORMATION
Accepted for Publication: May 28, 2019.

Published: July 31, 2019. doi:10.1001/jamanetworkopen.2019.7978

Open Access: This is an open access article distributed under the terms of the CC-BY License. © 2019 Nho K et al.
JAMA Network Open.

Corresponding Authors: Rima Kaddurah-Daouk, PhD, Duke University Medical Center, Room 3552, Duke Blue
South, Durham, NC 27710 (rima.kaddurahdaouk@duke.edu); Andrew J. Saykin, PsyD, Indiana University
Neuroscience Center, Department of Radiology and Imaging Sciences, Indiana University School of Medicine, 355
W 16th St, Ste 4100, Indianapolis, IN 46202 (asaykin@iupui.edu).

Author Affiliations: Center for Computational Biology and Bioinformatics, Indiana Alzheimer Disease Center,
Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis (Nho,
Risacher, Saykin); Department of Psychiatry and Behavioral Sciences, Duke University, Durham, North Carolina
(Kueider-Paisley, MahmoudianDehkordi, Arnold, Louie, Doraiswamy, Kaddurah-Daouk); Department of
Epidemiology, Erasmus Medical Centre, Rotterdam, the Netherlands (Ahmad, van Duijn); Institute of
Bioinformatics and Systems Biology, Helmholtz Zentrum München, German Research Center for Environmental

JAMA Network Open | Geriatrics Altered Liver Enzymes and Alzheimer Disease Diagnosis, Cognition, and Biomarkers

JAMA Network Open. 2019;2(7):e197978. doi:10.1001/jamanetworkopen.2019.7978 (Reprinted) July 31, 2019 10/20

Downloaded From: https://jamanetwork.com/ on 04/12/2021

https://jama.jamanetwork.com/article.aspx?doi=10.1001/jamanetworkopen.2019.7978&utm_campaign=articlePDF%26utm_medium=articlePDFlink%26utm_source=articlePDF%26utm_content=jamanetworkopen.2019.7978
https://jama.jamanetwork.com/article.aspx?doi=10.1001/jamanetworkopen.2019.7978&utm_campaign=articlePDF%26utm_medium=articlePDFlink%26utm_source=articlePDF%26utm_content=jamanetworkopen.2019.7978
https://jamanetwork.com/journals/jamanetworkopen/pages/instructions-for-authors#SecOpenAccess/?utm_campaign=articlePDF%26utm_medium=articlePDFlink%26utm_source=articlePDF%26utm_content=jamanetworkopen.2019.7978
mailto:rima.kaddurahdaouk@duke.edu
mailto:asaykin@iupui.edu


Health, Neuherberg, Germany (Arnold, Kastenmüller); Duke Molecular Physiology Institute, Duke University,
Durham, North Carolina (Blach); Rosa & Co LLC, San Carlos, California (Baillie); University of Texas Health Science
Center at San Antonio, San Antonio (Han); German Center for Diabetes Research, Neuherberg, Germany
(Kastenmüller); Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia
(Trojanowski, Shaw); Center for Imaging of Neurodegenerative Diseases, Department of Radiology, San Francisco
Veterans Affairs Medical Center and University of California, San Francisco (Weiner); Duke Institute of Brain
Sciences, Duke University, Durham, North Carolina (Doraiswamy, Kaddurah-Daouk); Department of Medicine,
Duke University, Durham, North Carolina (Doraiswamy, Kaddurah-Daouk); Nuffield Department of Population
Health, Oxford University, Oxford, United Kingdom (van Duijn).

Author Contributions: Drs Nho and Arnold had full access to all the data in the study and take responsibility for
the integrity of the data and the accuracy of the data analysis. Drs Nho and Kueider-Paisley and Mr Ahmad
contributed equally.

Concept and design: Nho, Kueider-Paisley, Ahmad, Trojanowski, Doraiswamy, Kaddurah-Daouk.

Acquisition, analysis, or interpretation of data: All authors.

Drafting of the manuscript: Nho, Kueider-Paisley, Ahmad, MahmoudianDehkordi, Louie, Trojanowski, Kaddurah-
Daouk.

Critical revision of the manuscript for important intellectual content: Nho, Kueider-Paisley, Ahmad, Arnold, Risacher,
Blach, Baillie, Han, Kastenmüller, Trojanowski, Shaw, Weiner, Doraiswamy, van Duijn, Saykin, Kaddurah-Daouk.

Statistical analysis: Nho, MahmoudianDehkordi, Trojanowski, van Duijn.

Obtained funding: Nho, Arnold, Weiner, van Duijn, Saykin, Kaddurah-Daouk.

Administrative, technical, or material support: Arnold, Louie, Blach, Han, Doraiswamy, Saykin.

Supervision: Nho, Arnold, Kastenmüller, Shaw, Kaddurah-Daouk.

Conflict of Interest Disclosures: Mr Louie reported receiving grants from the NIA during the conduct of the study.
Dr Baillie reported receiving a salary from Rosa & Co outside the submitted work. Dr Kastenmüller reported
receiving grants from NIH/NIA during the conduct of the study. Dr Trojanowski reported that he may accrue
revenue in the future on patents submitted by the University of Pennsylvania wherein he is a coinventor; and
receiving revenue from the sale of Avid to Eli Lily as a coinventor on imaging-related patents submitted by the
University of Pennsylvania. Dr Shaw reported receiving research funding from the Michael J. Fox Foundation for
PD Research; receiving grants from the National Institutes of Health/National Institute on Aging (NIH/NIA) during
the conduct of the study; serving as a consultant for Eli Lilly, Novartis, and Roche; and providing quality control
oversight for the Roche Elecsys immunoassay as part of responsibilities for the Alzheimer’s Disease Neuroimaging
Initiative (ADNI) study. Dr Weiner reported having stock and stock options from Elan and Synarc; receiving travel
expenses from Novartis, Tohoku University, Fundacio Ace, Travel eDreams, MCI Group, NSAS, Danone Trading,
ANT Congress, NeuroVigil, CHRU-Hopital Roger Salengro, Siemens, AstraZeneca, Geneva University Hospitals,
Lilly, University of California, San Diego–ADNI, Paris University, Institut Catala de Neurociencies Aplicades,
University of New Mexico School of Medicine, Ipsen, Clinical Trials on Alzheimer’s Disease, Pfizer, and AD PD
meeting; receiving grants and personal fees from the NIH; receiving grants from the Department of Defense,
Johnson & Johnson, GE, the Patient-Centered Outcomes Research Institute, California Department of Public
Health, Vanderbilt University Medical Center, University of Missouri, Australian Catholic University, Hillblom
Foundation, Alzheimer’s Association, Stroke Foundation, Veterans Administration, Siemens; and personal fees
from Bioclinica, Cerecin/Accera, Genentech/Roche, Indiana University, Eli Lilly, Lynch Group GLC, Dolby Family
Ventures, Nestec/Nestle, Health & Wellness Partners, Decision Resources LLC, Minds + Assembly, Japan Agency
for Medical Research & Development, NYU Langone, Merck, Bionest Partners, and from Alzheon Inc outside the
submitted work. Dr Doraiswamy reported receiving grants from the NIA and ADNI during the conduct of the study;
receiving grants from the NIH, the Department of Defense, Lilly/Avid, Alzheimer’s Drug Discovery Foundation, the
Karen L. Wrenn Trust, ASNR Foundation, Avanir; and Salix; serving on boards of Apollo Health and Baycrest; being
a minor shareholder in Evidation Health, Turtle Shell, Advera Health Analytics, and Anthrotronix; receiving
advisory fees from Cogniciti, Neuronix, NeuroPro, Anthrotronix, Verily, Apollo, Genomind, and Clearview outside
the submitted work; being a coinventor, through Duke, on patent applications on metabolomics for Alzheimer
disease, novel treatments of Alzheimer’s pending and computational models of dementia that are unlicensed. Dr
Saykin reported receiving grants from the NIH during the conduct of the study; receiving grants from the NIH;
receiving nonfinancial support from Avid Radiopharmaceuticals; receiving investigator-initiated research support
from Eli Lilly unrelated to the work reported here; receiving consulting fees and travel expenses from Eli Lilly and
Siemens Healthcare; serving as a consultant to Arkley BioTek; and receiving support from Springer-Nature
publishing as Editor-In-Chief of Brain Imaging and Behavior. Dr Kaddurah-Daouk reported being an inventor on key
patents (7947453, 7910301, 7682783, 7682784, 7635556, 7553616, 7550258, 7550260, 7329489, 7005255,

JAMA Network Open | Geriatrics Altered Liver Enzymes and Alzheimer Disease Diagnosis, Cognition, and Biomarkers

JAMA Network Open. 2019;2(7):e197978. doi:10.1001/jamanetworkopen.2019.7978 (Reprinted) July 31, 2019 11/20

Downloaded From: https://jamanetwork.com/ on 04/12/2021



and 6706764) in the field of metabolomics including applications for Alzheimer disease. No other disclosures were
reported.

Funding/Support: Funding for the ADMC (Alzheimer Disease Metabolomics Consortium, led by Dr Kaddurah-
Daouk at Duke University) was provided by grant R01AG046171 from the NIA, a component of the Accelerated
Medicines Partnership for AD (AMP-AD) Target Discovery and Preclinical Validation Project, and grant RF1
AG0151550 from the NIA, a component of the M2OVE-AD Consortium (Molecular Mechanisms of the Vascular
Etiology of AD–Consortium). Data collection and sharing for this project was funded by ADNI (NIH grant U01
AG024904) and Department of Defense ADNI (Department of Defense award W81XWH-12-2-0012). ADNI is
funded by the NIA, the National Institute of Biomedical Imaging and Bioengineering, and through generous
contributions from the following: AbbVie, Alzheimer’s Association, Alzheimer’s Drug Discovery Foundation,
Araclon Biotech, BioClinica Inc, Biogen, Bristol-Myers Squibb Co, CereSpir Inc, Eisai Inc, Elan Pharmaceuticals Inc,
Eli Lilly and Co, EuroImmun, F. Hoffmann-La Roche Ltd and its affiliated company Genentech Inc, Fujirebio, GE
Healthcare, IXICO Ltd, Janssen Alzheimer Immunotherapy Research & Development LLC, Johnson & Johnson
Pharmaceutical Research & Development LLC, Lumosity, Lundbeck, Merck & Co Inc, Meso Scale Diagnostics LLC,
NeuroRx Research, Neurotrack Technologies, Novartis Pharmaceuticals Corp, Pfizer Inc, Piramal Imaging, Servier,
Takeda Pharmaceutical Co, and Transition Therapeutics. The Canadian Institutes of Health Research is providing
funds to support ADNI clinical sites in Canada. Private sector contributions are facilitated by the Foundation for the
National Institutes of Health. The grantee organization is the Northern California Institute for Research and
Education, and the study is coordinated by the Alzheimer’s Disease Cooperative Study at the University of
California, San Diego. ADNI data are disseminated by the Laboratory for Neuro Imaging at the University of
Southern California. The work of various consortium investigators are also supported by various NIA grants
(U01AG024904-09S4, P50NS053488, R01AG19771, P30AG10133, P30AG10124, K01AG049050, and R03
AG054936), the National Library of Medicine (grants R01LM011360 and R01LM012535), and the National
Institute of Biomedical Imaging and Bioengineering (grant R01EB022574). Additional support came from
Helmholtz Zentrum, the Alzheimer’s Association, the Indiana Clinical and Translational Science Institute, and the
Indiana University-IU Health Strategic Neuroscience Research Initiative.

Role of the Funder/Sponsor: The funding sources had no role in the design and conduct of the study; collection,
management, analysis, and interpretation of the data; preparation, review, or approval of the manuscript; and
decision to submit the manuscript for publication.

Group Information: Alzheimer’s Disease Neuroimaging Initiative-I, ADNI-GO, ADNI-II, and ADNI-III investigators
include Part A: Leadership and Infrastructure Principal Investigator (PI): Michael W. Weiner, MD, University of
California San Francisco; ATRI PI and Director of Coordinating Center Clinical Core: Paul Aisen, MD, University of
Southern California; Executive Committee: Michael Weiner, MD, University of California San Francisco; Paul Aisen,
MD, University of Southern California; Ronald Petersen, MD, PhD, Mayo Clinic, Rochester, NY; Clifford R. Jack Jr,
MD, Mayo Clinic, Rochester, NY; William Jagust, MD, University of California Berkeley; John Q. Trojanowki, MD,
PhD, University of Pennsylvania; Arthur W. Toga, PhD, University of Southern California; Laurel Beckett, PhD,
University of California Davis; Robert C. Green, MD, MPH, Brigham and Women’s Hospital/Harvard Medical School;
Andrew J. Saykin, PsyD, Indiana University; John Morris, MD, Washington University St Louis; and Leslie M. Shaw,
University of Pennsylvania.

ADNI External Advisory Board members include Zaven Khachaturian, PhD, Prevent Alzheimer’s Disease 2020
(Chair); Greg Sorensen, MD, Siemens; Maria Carrillo, PhD, Alzheimer’s Association; Lew Kuller, MD, University of
Pittsburgh; Marc Raichle, MD, Washington University, St Louis; Steven Paul, MD, Cornell University; Peter Davies,
MD, Albert Einstein College of Medicine of Yeshiva University; Howard Fillit, MD, AD Drug Discovery Foundation;
Franz Hefti, PhD, Acumen Pharmaceuticals; David Holtzman, MD, Washington University, St Louis; M. Marcel
Mesulam, MD, Northwestern University; William Potter, MD, National Institute of Mental Health; and Peter Snyder,
PhD, Brown University.

ADNI-3 Private Partner Scientific Board: Veronika Logovinsky, MD, PhD, Eli Lilly (Chair).

Data and Publications Committee members include Robert C. Green, MD, MPH, BWH/HMS (Chair) Resource
Allocation Review Committee; Tom Montine, MD, PhD, University of Washington (Chair); Clinical Core Leaders:
Ronald Petersen, MD, PhD, Mayo Clinic, Rochester (Core PI); Paul Aisen, MD, University of Southern California
Clinical Informatics and Operations; Gustavo Jimenez, MBS, University of Southern California; Michael Donohue,
PhD, University of Southern California; Devon Gessert, BS, University of Southern California; Kelly Harless, BA,
University of Southern California; Jennifer Salazar, MBS, University of Southern California; Yuliana Cabrera, BS,
University of Southern California; Sarah Walter, MSc, University of Southern California; and Lindsey Hergesheimer,
BS, University of Southern California. Biostatistics Core Leaders and Key Personnel: Laurel Beckett, PhD, University
of California Davis (Core PI); Danielle Harvey, PhD, University of California Davis; and Michael Donohue, PhD,
University of California San Diego. MRI Core Leaders and Key Personnel: Clifford R. Jack Jr, MD, Mayo Clinic,
Rochester (Core PI); Matthew Bernstein, PhD, Mayo Clinic, Rochester; Nick Fox, MD, University of London; Paul

JAMA Network Open | Geriatrics Altered Liver Enzymes and Alzheimer Disease Diagnosis, Cognition, and Biomarkers

JAMA Network Open. 2019;2(7):e197978. doi:10.1001/jamanetworkopen.2019.7978 (Reprinted) July 31, 2019 12/20

Downloaded From: https://jamanetwork.com/ on 04/12/2021



Thompson, PhD, University of California Los Angeles School of Medicine; Norbert Schuff, PhD, University of
California San Francisco MRI; Charles DeCarli, MD, University of California Davis; Bret Borowski, RT, Mayo Clinic;
Jeff Gunter, PhD, Mayo Clinic; Matt Senjem, MS, Mayo Clinic; Prashanthi Vemuri, PhD, Mayo Clinic; David Jones,
MD, Mayo Clinic; Kejal Kantarci, Mayo Clinic; and Chad Ward, Mayo Clinic. PET Core Leaders and Key Personnel:
William Jagust, MD, University of California Berkeley (Core PI); Robert A. Koeppe, PhD, University of Michigan;
Norm Foster, MD, University of Utah; Eric M. Reiman, MD, Banner Alzheimer’s Institute; Kewei Chen, PhD, Banner
Alzheimer’s Institute; Chet Mathis, MD, University of Pittsburgh; and Susan Landau, PhD, University of California
Berkeley.

Neuropathology Core Leaders include John C. Morris, MD, Washington University, St Louis; Nigel J. Cairns, PhD,
FRCPath, Washington University, St Louis; Erin Franklin, MS, CCRP, Washington University, St Louis; and Lisa
Taylor-Reinwald, BA, HTL, Washington University, St Louis.

American Society for Clinical Pathology (ASCP)–Past Investigator: Biomarkers Core Leaders and Key Personnel:
Leslie M. Shaw, PhD, University of Pennsylvania School of Medicine; John Q. Trojanowki, MD, PhD, Unversity of
Pennsylvania School of Medicine; Virginia Lee, PhD, MBA, Unversity of Pennsylvania School of Medicine;
Magdalena Korecka, PhD, Unversity of Pennsylvania School of Medicine; and Michal Figurski, PhD, Unversity of
Pennsylvania School of Medicine. Informatics Core Leaders and Key Personnel: Arthur W. Toga, PhD, University of
Southern California (Core PI); Karen Crawford, University of Southern California; and Scott Neu, PhD, University
of Southern California. Genetics Core Leaders and Key Personnel: Andrew J. Saykin, PsyD, Indiana University;
Tatiana M. Foroud, PhD, Indiana University; Steven Potkin, MD, University of California Irvine; Li Shen, PhD, Indiana
University; Kelley Faber, MS, CCRC, Indiana University; Sungeun Kim, PhD, Indiana University; and Kwangsik Nho,
PhD, Indiana University. Initial Concept Planning & Development: Michael W. Weiner, MD, University of California
San Francisco; Lean Thal, MD, University of California San Diego; and Zaven Khachaturian, PhD, Prevent
Alzheimer’s Disease 2020. Early Project Proposal Development: Leon Thal, MD, University of California San Diego;
Neil Buckholtz, National Institute on Aging; Michael W. Weiner, MD, University of California San Francisco; Peter J.
Snyder, PhD, Brown University; William Potter, MD, National Institute of Mental Health; Steven Paul, MD, Cornell
University; Marilyn Albert, PhD, Johns Hopkins University; Richard Frank, MD, PhD, Richard Frank Consulting;
Zaven Khachaturian, PhD, Prevent Alzheimer’s Disease 2020; and John Hsiao, MD, National Institute on Aging.

Part B: Investigators by Site: Oregon Health & Science University: Joseph Quinn, MD; Lisa C. Silbert, MD; Betty
Lind, BS; Jeffrey A. Kaye, MD, (Past Investigator); Raina Carter, BA (Past Investigator); and Sara Dolen, BS (Past
Investigator). University of Southern California: Lon S. Schneider, MD; Sonia Pawluczyk, MD; Mauricio Becerra, BS;
Liberty Teodoro, RN; and Bryan M. Spann, DO, PhD (Past Investigator). University of California–San Diego: James
Brewer, MD, PhD; Helen Vanderswag, RN; and Adam Fleisher, MD (Past Investigator). University of Michigan:
Jaimie Ziolkowski, MA, BS, TLLP; Judith L. Heidebrink, MD, MS; and Joanne L. Lord, LPN, BA, CCRC (Past
Investigator). Mayo Clinic, Rochester: Ronald Petersen, MD, PhD; Sara S. Mason, RN; Colleen S. Albers, RN; David
Knopman, MD; and Kris Johnson, RN (Past Investigator). Baylor College of Medicine: Javier Villanueva-Meyer, MD;
Valory Pavlik, PhD; Nathaniel Pacini, MA; Ashley Lamb, MA; Joseph S. Kass, MD, LD, FAAN; Rachelle S. Doody, MD,
PhD (Past Investigator); Victoria Shibley, MS (Past Investigator); Munir Chowdhury, MBBS, MS (Past Investigator);
Susan Rountree, MD (Past Investigator); and Mimi Dang, MD (Past Investigator). Columbia University Medical
Center: Yaakov Stern, PhD; Lawrence S. Honig, MD, PhD; Karen L. Bell, MD; and Randy Yeh, MD. Washington
University in St Louis: Beau Ances, MD, PhD, MSc; John C. Morris, MD; David Winkfield, BS; Maria Carroll, RN, MSN,
GCNS-BC; Angela Oliver, RN, BSN, MSG; Mary L. Creech, RN, MSW (Past Investigator); Mark A. Mintun, MD (Past
Investigator); and Stacy Schneider, APRN, BC, GNP (Past Investigator). University of Alabama–Birmingham: Daniel
Marson, JD, PhD; David Geldmacher, MD; Marissa Natelson Love, MD; Randall Griffith, PhD, ABPP (Past
Investigator); David Clark, MD (Past Investigator); and John Brockington, MD (Past Investigator). Mount Sinai
School of Medicine: Hillel Grossman, MD; and Effie Mitsis, PhD (Past Investigator). Rush University Medical Center:
Raj C. Shah, MD; Melissa Lamar, PhD; and Patricia Samuels. Wien Center: Ranjan Duara, MD; Maria T. Greig-Custo,
MD; and Rosemarie Rodriguez, PhD. Johns Hopkins University: Marilyn Albert, PhD; Chiadi Onyike, MD; Daniel
D’Agostino II, BS; and Stephanie Kielb, BS (Past Investigator). New York University: Martin Sadowski, MD, PhD;
Mohammed O. Sheikh, MD; Jamika Singleton-Garvin, CCRP; Anaztasia Ulysse; and Mrunalini Gaikwad. Duke
University Medical Center: P. Murali Doraiswamy, MBBS, FRCP; Jeffrey R. Petrella, MD; Olga James, MD; Salvador
Borges-Neto, MD; Terence Z. Wong, MD (Past Investigator); and Edward Coleman (Past Investigator). University of
Pennsylvania: Jason H. Karlawish, MD; David A. Wolk, MD; Sanjeev Vaishnavi, MD; Christopher M. Clark, MD (Past
Investigator); and Steven E. Arnold, MD (Past Investigator). University of Kentucky: Charles D. Smith, MD; Greg
Jicha, MD; Peter Hardy, PhD; Riham El Khouli, MD; Elizabeth Oates, MD; and Gary Conrad, MD. University of
Pittsburgh: Oscar L. Lopez, MD; MaryAnn Oakley, MA; and Donna M. Simpson, CRNP, MPH. University of Rochester
Medical Center: Anton P. Porsteinsson, MD; Kim Martin, RN; Nancy Kowalksi, MS, RNC; Melanie Keltz, RN; Bonnie
S. Goldstein, MS, NP (Past Investigator); Kelly M. Makino, BS (Past Investigator); M. Saleem Ismail, MD (Past
Investigator); and Connie Brand, RN (Past Investigator). University of California Irvine IMIND: Gaby Thai, MD;
Aimee Pierce, MD; Beatriz Yanez, RN; Elizabeth Sosa, PhD; and Megan Witbracht, PhD. University of Texas

JAMA Network Open | Geriatrics Altered Liver Enzymes and Alzheimer Disease Diagnosis, Cognition, and Biomarkers

JAMA Network Open. 2019;2(7):e197978. doi:10.1001/jamanetworkopen.2019.7978 (Reprinted) July 31, 2019 13/20

Downloaded From: https://jamanetwork.com/ on 04/12/2021



Southwestern Medical School: Kyle Womack, MD; Dana Mathews, MD, PhD; and Mary Quiceno, MD. Emory
University: Allan I. Levey, MD, PhD; James J. Lah, MD, PhD; and Janet S. Cellar, DNP, PMHCNS-BC. University of
Kansas Medical Center: Jeffrey M. Burns, MD; Russell H. Swerdlow, MD; and William M. Brooks, PhD. University of
California, Los Angeles: Ellen Woo, PhD; Daniel H.S. Silverman, MD, PhD; Edmond Teng, MD, PhD; Sarah Kremen,
MD; Liana Apostolova, MD (Past Investigator); Kathleen Tingus, PhD (Past Investigator); Po H. Lu, PsyD (Past
Investigator); and George Bartzokis, MD (Past Investigator). Mayo Clinic, Jacksonville: Neill R Graff-Radford,
MBBCH, FRCP (London); Francine Parfitt, MSH, CCRC; and Kim Poki-Walker, BA. Indiana University: Martin R.
Farlow, MD; Ann Marie Hake, MD; Brandy R. Matthews, MD (Past Investigator); Jared R. Brosch, MD; and Scott
Herring, RN, CCRC. Yale University School of Medicine: Christopher H. van Dyck, MD; Richard E. Carson, PhD; and
Pradeep Varma, MD. McGill University, Montreal-Jewish General Hospital: Howard Chertkow, MD; Howard
Bergman, MD; and Chris Hosein, Med. Sunnybrook Health Sciences, Ontario: Sandra Black, MD, FRCPC; Bojana
Stefanovic, PhD; and Chris (Chinthaka) Heyn, BSC, PhD, MD, FRCPC. U.B.C. Clinic for AD & Related Disorders: Ging-
Yuek Robin Hsiung, MD, MHSc, FRCPC; Benita Mudge, BS; Vesna Sossi, PhD; Howard Feldman, MD, FRCPC (Past
Investigator); and Michele Assaly, MA (Past Investigator). Cognitive Neurology - St Joseph’s, Ontario: Elizabeth
Finger, MD; Stephen Pasternack, MD, PhD; William Pavlosky, MD; Irina Rachinsky, MD (Past Investigator); Dick
Drost, PhD (Past Investigator); and Andrew Kertesz, MD (Past Investigator). Cleveland Clinic Lou Ruvo Center for
Brain Health: Charles Bernick, MD, MPH; and Donna Munic, PhD. Northwestern University: Marek-Marsel
Mesulam, MD; Emily Rogalski, PhD; Kristine Lipowski, MA; Sandra Weintraub, PhD; Borna Bonakdarpour, MD;
Diana Kerwin, MD (Past Investigator); Chuang-Kuo Wu, MD, PhD (Past Investigator); and Nancy Johnson, PhD
(Past Investigator). Premiere Research Inst (Palm Beach Neurology): Carl Sadowsky, MD; and Teresa Villena, MD.
Georgetown University Medical Center: Raymond Scott Turner, MD, PhD; Kathleen Johnson, NP; and Brigid
Reynolds, NP. Brigham and Women’s Hospital: Reisa A. Sperling, MD; Keith A. Johnson, MD; and Gad A. Marshall,
MD. Stanford University: Jerome Yesavage, MD; Joy L. Taylor, PhD; Steven Chao, MD, PhD; Barton Lane, MD (Past
Investigator); Allyson Rosen, PhD (Past Investigator); and Jared Tinklenberg, MD (Past Investigator). Banner Sun
Health Research Institute: Edward Zamrini, MD; Christine M. Belden, PsyD; and Sherye A. Sirrel, CCRC. Boston
University: Neil Kowall, MD; Ronald Killiany, PhD; Andrew E. Budson, MD; Alexander Norbash, MD (Past
Investigator); and Patricia Lynn Johnson, BA (Past Investigator). Howard University: Thomas O. Obisesan, MD,
MPH; Ntekim E. Oyonumo, MD, PhD; Joanne Allard, PhD; and Olu Ogunlana, BPharm. Case Western Reserve
University: Alan Lerner, MD; Paula Ogrocki, PhD; Curtis Tatsuoka, PhD; and Parianne Fatica, BA, CCRC. University
of California, Davis–Sacramento: Evan Fletcher, PhD; Pauline Maillard, PhD; John Olichney, MD; Charles DeCarli,
MD; and Owen Carmichael, PhD (Past Investigator). Neurological Care of CNY: Smita Kittur, MD (Past Investigator).
Parkwood Institute: Michael Borrie, MB ChB; T-Y Lee, PhD; and Rob Bartha, PhD. University of Wisconsin: Sterling
Johnson, PhD; Sanjay Asthana, MD; and Cynthia M. Carlsson, MD, MS. Banner Alzheimer’s Institute: Pierre Tariot,
MD; Anna Burke, MD; Joel Hetelle, BS; Kathryn DeMarco, BS; Nadira Trncic, MD, PhD, CCRC (Past Investigator);
Adam Fleisher, MD (Past Investigator); and Stephanie Reeder, BA (Past Investigator). Dent Neurologic Institute:
Vernice Bates, MD; Horacio Capote, MD; and Michelle Rainka, PharmD, CCRP. The Ohio State University: Douglas
W. Scharre, MD; Maria Kataki, MD, PhD; and Rawan Tarawneh, MD. Albany Medical College: Earl A. Zimmerman,
MD; Dzintra Celmins, MD; and David Hart, MD. Hartford Hospital, Olin Neuropsychiatry Research Center: Godfrey
D. Pearlson, MD; Karen Blank, MD; and Karen Anderson, RN. Dartmouth-Hitchcock Medical Center: Laura A.
Flashman, PhD; Marc Seltzer, MD; Mary L. Hynes, RN, MPH; and Robert B. Santulli, MD (Past Investigator). Wake
Forest University Health Sciences: Kaycee M. Sink, MD, MAS; Mia Yang, MD; and Akiva Mintz, MD, PhD. Rhode
Island Hospital: Brian R. Ott, MD; Geoffrey Tremont, PhD; and Lori A. Daiello, PharmD, ScM. Butler Hospital:
Courtney Bodge, PhD; Stephen Salloway, MD, MS; Paul Malloy, PhD; Stephen Correia, PhD; and Athena Lee, PhD.
University of California San Francisco: Howard J. Rosen, MD; Bruce L. Miller, MD; and David Perry, MD. Medical
University of South Carolina: Jacobo Mintzer, MD, MBA; Kenneth Spicer, MD, PhD; and David Bachman, MD. St
Joseph’s Health Care: Elizabeth Finger, MD; Stephen Pasternak, MD; Irina Rachinsky, MD; John Rogers, MD;
Andrew Kertesz, MD (Past Investigator); and Dick Drost, MD (Past Investigator). Nathan Kline Institute: Nunzio
Pomara, MD; Raymundo Hernando, MD; and Antero Sarrael, MD. University of Iowa College of Medicine: Delwyn
D. Miller, PharmD, MD; Karen Ekstam Smith, RN; Hristina Koleva, MD; Ki Won Nam, MD; Hyungsub Shim, MD; and
Susan K. Schultz, MD (Past Investigator). Cornell University: Norman Relkin, MD, PhD; Gloria Chiang, MD; Michael
Lin, MD; and Lisa Ravdin, PhD. University of South Florida Health Byrd Alzheimer’s Institute: Amanda Smith, MD;
Christi Leach, MD; Balebail Ashok Raj, MD (Past Investigator); and Kristin Fargher, MD (Past Investigator).

DOD ADNI investigators include Part A: Leadership and Infrastructure Principal Investigator: Michael W. Weiner,
MD, University of California, San Francisco; ATRI PI and Director of Coordinating Center Clinical Core: Paul Aisen,
MD, University of Southern California; Executive Committee: Michael Weiner, MD, University of California San
Francisco; Paul Aisen, MD, University of Southern California; Ronald Petersen, MD, PhD, Mayo Clinic, Rochester;
Robert C. Green, MD, MPH, Brigham and Women’s Hospital/Harvard Medical School; Danielle Harvey, PhD,
University of California Davis; Clifford R. Jack Jr, MD, Mayo Clinic, Rochester; William Jagust, MD, University of
California Berkeley; John C. Morris, MD, Washington University, St Louis; Andrew J. Saykin, PsyD, Indiana
University; Leslie M. Shaw, PhD, Perelman School of Medicine, Unversity of Pennsylvania; Arthur W. Toga, PhD,
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University of Southern California; John Q. Trojanowki, MD, PhD, Perelman School of Medicine, University of
Pennsylvania; Psychological Evaluation/PTSD Core: Thomas Neylan, MD, University of California San Francisco;
Traumatic Brain Injury/TBI Core: Jordan Grafman, PhD, Rehabilitation Institute of Chicago, Feinberg School of
Medicine, Northwestern University; Data and Publication Committee: Robert C. Green, MD, MPH BWH/HMS
(Chair); Resource Allocation Review Committee: Tom Montine, MD, PhD, University of Washington (Chair); Clinical
Core Leaders: Michael Weiner MD, Core PI; Ronald Petersen, MD, PhD, Mayo Clinic, Rochester (Core PI); Paul Aisen,
MD, University of Southern California; Clinical Informatics and Operations: Gustavo Jimenez, MBS, University of
Southern California; Michael Donohue, PhD, University of Southern California; Devon Gessert, BS, University of
Southern California; Kelly Harless, BA, University of Southern California; Jennifer Salazar, MBS, University of
Southern California; Yuliana Cabrera, BS, University of Southern California; Sarah Walter, MSc, University of
Southern California; Lindsey Hergesheimen, BS, University of Southern California; San Francisco Veterans Affairs
Medical Center; Thomas Neylan, MD, University of California San Francisco; Jacqueline Hayes, University of
California San Francisco; Shannon Finley, University of California San Francisco; Biostatistics Core Leaders and Key
Personnel: Danielle Harvey, PhD, University of California Davis (Core PI); Michael Donohue, PhD, University of
California San Diego; MRI Core Leaders and Key Personnel: Clifford R. Jack Jr, MD, Mayo Clinic, Rochester (Core PI);
Matthew Bernstein, PhD, Mayo Clinic, Rochester; Bret Borowski, RT, Mayo Clinic; Jeff Gunter, PhD, Mayo Clinic;
Matt Senjem, MS, Mayo Clinic; Kejal Kantarci, Mayo Clinic; Chad Ward, Mayo Clinic; PET Core Leaders and Key
Personnel: William Jagust, MD, University of California Berkeley (Core PI); Robert A. Koeppe, PhD, University of
Michigan; Norm Foster, MD, University of Utah; Eric M. Reiman, MD, Banner Alzheimer’s Institute; Kewei Chen,
PhD, Banner Alzheimer’s Institute; Susan Landau, PhD, University of California Berkeley; Neuropathology Core
Leaders: John C. Morris, MD, Washington University, St Louis; Nigel J. Cairns, PhD, FRCPath, Washington
University, St Louis; Erin Householder, MS, Washington University, St Louis; Biomarkers Core Leaders and Key
Personnel: Leslie M. Shaw, PhD, Perelman School of Medicine, University of Pennsylvania; John Q. Trojanowki, MD,
PhD, Perelman School of Medicine, University of Pennsylvania; Virginia Lee, PhD, MBA, Perelman School of
Medicine, University of Pennsylvania; Magdalena Korecka, PhD, Perelman School of Medicine, University of
Pennsylvania; Michal Figurski, PhD, Perelman School of Medicine, University of Pennsylvania; Informatics Core
Leaders and Key Personnel: Arthur W. Toga, PhD, University of Southern California (Core PI); Karen Crawford,
University of Southern California; Scott Neu, PhD, University of Southern California; Genetics Core Leaders and Key
Personnel: Andrew J. Saykin, PsyD, Indiana University; Tatiana M. Foroud, PhD, Indiana University; Steven Potkin,
MD, University of California Irvine; Li Shen, PhD, Indiana University; Kelley Faber, MS, CCRC, Indiana University;
Sungeun Kim, PhD, Indiana University; Kwangsik Nho, PhD, Indiana University; Initial Concept Planning &
Development: Michael W. Weiner, MD, University of California San Francisco; Karl Friedl, Department of Defense
(retired).

Part B: Investigators by Site: University of Southern California: Lon S. Schneider, MD, MS; Sonia Pawluczyk, MD;
and Mauricio Becerra. University of California, San Diego: James Brewer, MD, PhD; and Helen Vanderswag, RN.
Columbia University Medical Center: Yaakov Stern, PhD; Lawrence S. Honig, MD, PhD; and Karen L. Bell, MD. Rush
University Medical Center: Debra Fleischman, PhD; Konstantinos Arfanakis, PhD; and Raj C. Shah, MD. Wien
Center: Ranjan Duara, MD (PI); Daniel Varon, MD (Co-PI); and Maria T Greig, HP (Coordinator). Duke University
Medical Center: P. Murali Doraiswamy, MBBS; Jeffrey R. Petrella, MD; and Olga James, MD. University of Rochester
Medical Center: Anton P. Porsteinsson, MD (director); Bonnie Goldstein, MS, NP (coordinator); and Kimberly S.
Martin, RN. University of California, Irvine: Steven G. Potkin, MD; Adrian Preda, MD; and Dana Nguyen, PhD.
Medical University of South Carolina: Jacobo Mintzer, MD, MBA; Dino Massoglia, MD, PhD; and Olga Brawman-
Mintzer, MD. Premiere Research Inst (Palm Beach Neurology): Carl Sadowsky, MD; Walter Martinez, MD; and
Teresa Villena, MD. University of California, San Francisco: William Jagust MD; Susan Landau PhD; Howard Rosen,
MD; and David Perry. Georgetown University Medical Center: Raymond Scott Turner, MD, PhD; Kelly Behan; and
Brigid Reynolds, NP. Brigham and Women’s Hospital: Reisa A. Sperling, MD; Keith A. Johnson, MD; and Gad
Marshall, MD. Banner Sun Health Research Institute: Marwan N. Sabbagh, MD; Sandra A. Jacobson, MD; and
Sherye A. Sirrel, MS, CCRC. Howard University: Thomas O. Obisesan, MD, MPH; Saba Wolday, MSc; and Joanne
Allard, PhD. University of Wisconsin: Sterling C. Johnson, PhD; J. Jay Fruehling, MA; and Sandra Harding, MS.
University of Washington: Elaine R. Peskind, MD; Eric C. Petrie, MD, MS; and Gail Li, MD, PhD. Stanford University:
Jerome A. Yesavage, MD; Joy L. Taylor, PhD; Ansgar J. Furst, PhD; and Steven Chao, MD. Cornell University:
Norman Relkin, MD, PhD; Gloria Chiang, MD; and Lisa Ravdin, PhD.

ADNI Depression: Part A: Leadership and Infrastructure Principal Investigator: Scott Mackin, PhD, University of
California San Francisco; ATRI PI and Director of Coordinating Center Clinical Core: Paul Aisen, MD, University of
Southern California; Rema Raman, PhD, University of Southern California. Executive Committee: Scott Mackin,
PhD, University of California San Francisco; Michael Weiner, MD, University of California San Francisco; Paul Aisen,
MD, University of Southern California; Rema Raman, PhD, University of Southern California; Clifford R. Jack Jr, MD,
Mayo Clinic, Rochester; Susan Landau, PhD, University of California Berkeley; Andrew J. Saykin, PsyD, Indiana
University; Arthur W. Toga, PhD, University of Southern California; Charles DeCarli, MD, University of California
Davis; Robert A. Koeppe, PhD, University of Michigan; Data and Publication Committee: Robert C. Green, MD,
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MPH, BWH/HMS (Chair); Erin Drake, MA, BWM/HMS (Director); Clinical Core Leaders: Michael Weiner, MD (Core
PI); Paul Aisen, MD, University of Southern California; Rema Raman, PhD, University of Southern California; Mike
Donohue, PhD, University of Southern California; Clinical Informatics, Operations and Regulatory Affairs: Gustavo
Jimenez, MBS, University of Southern California; Devon Gessert, BS, University of Southern California; Kelly
Harless, BA, University of Southern California; Jennifer Salazar, MBS, University of Southern California; Yuliana
Cabrera, BS, University of Southern California; Sarah Walter, MSc, University of Southern California; Lindsey
Hergesheimer, BS, University of Southern California; Elizabeth Shaffer, BS; Psychiatry Site Leaders and Key
Personnel: Scott Mackin, PhD, University of California San Francisco; Craig Nelson, MD, University of California San
Francisco; David Bickford, BA, University of California San Francisco; Meryl Butters, PhD, University of Pittsburgh;
and Michelle Zmuda, MA, University of Pittsburgh.

MRI Core Leaders and Key Personnel: Clifford R. Jack Jr, MD, Mayo Clinic, Rochester (Core PI); Matthew Bernstein,
PhD, Mayo Clinic, Rochester; Bret Borowski, RT, Mayo Clinic, Rochester; Jeff Gunter, PhD, Mayo Clinic, Rochester;
Matt Senjem, MS, Mayo Clinic, Rochester; Kejal Kantarci, MD, Mayo Clinic, Rochester; Chad Ward, BA, Mayo Clinic,
Rochester; Denise Reyes, BS, Mayo Clinic, Rochester; PET Core Leaders and Key Personnel: Robert A. Koeppe,
PhD, University of Michigan; Susan Landau, PhD, University of California Berkeley; Informatics Core Leaders and
Key Personnel: Arthur W. Toga, PhD, University of Southern California (Core PI); Karen Crawford, University of
Southern California; Scott Neu, PhD, University of Southern California.

Genetics Core Leaders and Key Personnel: Andrew J. Saykin, PsyD, Indiana University; Tatiana M. Foroud, PhD,
Indiana University; Kelley M. Faber, MS, CCRC, Indiana University; Kwangsik Nho, PhD, Indiana University; Kelly N.
Nudelman, Indiana University.

Part B: Investigators by Site: University of California San Francisco: Scott Mackin, PhD; Howard Rosen, MD; Craig
Nelson, MD; David Bickford, BA; Yiu Ho Au, BA; Kelly Scherer, BS; Daniel Catalinotto, BA; Samuel Stark, BA; Elise
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Lopez, MD; MaryAnn Oakley, MA; and Donna M. Simpson, CRNP, MPH.
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(ADNI BiomarkerCore); and JohnTrojanowski (ADNI Biomarker Core). University of Oxford: Cornelia van Duijin (PI);
and Shazad Ahmad (Erasmus). Leiden University Metabolomics Center: Thomas Hankemeier (Pl) & Team. National
University of Ireland–Galway: Ines Thiele (PI); Almut Heinken (Luxembourg). Institute for Systems Biology: Nathan
Price (PI) & Team; Cory Funk; and Priyanka Baloni. University of Hawaii: Wei Jia (PI) & Team. The Metabolomics
Innovation Centre Canada tTMICl: David Wishart (PI) & Team.

AMP-AD Collaborations: Rush University (David Bennen); Emory University (Allan Levey); SUNY (Herman
Moreno); Columbia (Jose Luchsinger and Phil DeJager); Mt Sinai (Bin Zhang); Mayo-Florida (Nilufer Taner).
University of Arizona: Roberta Brinton (PI) and Team; Rui Chang. Boston University: Lindsay Farrer (PI); Rhoda Au
and Team. Biocrates Inc Metabolomics: Research Team. Nightingale Health: Peter Wurtz and Research Team. SAGE
Networks: Lara Mangravire (PQ) and Team. Cornell University: Jan Krumsiek and Team. USDA: John Newman &
Team. Duke University Medical Center, Psychiatry, Metabolomics Core and Statistics (Coordinating Center): Rima
Kaddurah-Daouk (Overall PI); Alexandra Kueider-Paisley; P. Murali Doraiswamy (AD clinician); Colette Blach
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Additional Information: Data used in preparation of this article were obtained from the Alzheimer’s Disease
Neuroimaging Initiative (ADNI) database (http://adni.loni.usc.edu). As such, the investigators within the ADNI
contributed to the design and implementation of ADNI and/or provided data but did not participate in analysis or
writing of this article. Researchers can apply for ADNI data at http://adni.loni.usc.edu/data-samples/access-data/.
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